Send to

Choose Destination
Cytotechnology. 2011 Mar;63(2):191-200. doi: 10.1007/s10616-011-9341-1. Epub 2011 Mar 19.

3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH.

Author information

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.


Caffeoylquinic acid (CQA) is one of the phenylpropanoids found in a variety of natural resources and foods, such as sweet potatoes, propolis, and coffee. Previously, we reported that 3,5-di-O-caffeoylquinic acid (3,5-di-CQA) has a neuroprotective effect against amyloid-β (Aβ)-induced cell death through the overexpression of glycolytic enzyme. Additionally, 3,5-di-CQA administration induced the improvement of spatial learning and memory on senescence accelerated-prone mice (SAMP8). The aim of this study was to investigate whether 3,4,5-tri-O-caffeoylquinic acid (3,4,5-tri-CQA), isolated from propolis, shows a neuroprotective effect against Aβ-induced cell death on human neuroblastoma SH-SY5Y cells. To clarify the possible mechanism, we performed proteomics and real-time RT-PCR as well as a measurement of the intracellular adenosine triphosphate (ATP) level. These results showed that 3,4,5-tri-CQA attenuated the cytotoxicity and prevented Aβ-mediated apoptosis. Glycolytic enzymes, phosphoglycerate mutase 1 (PGAM1) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were overexpressed in co-treated cells with both 3,4,5-tri-CQA and Aβ. The mRNA expression of PGAM1, G3PDH, and phosphoglycerate kinase 1 (PGK1), and intracellular ATP level were also increased in 3,4,5-tri-CQA treated cells. Taken together the findings in our study suggests that 3,4,5-tri-CQA shows a neuroprotective effect against Aβ-induced cell death through the upregulation of glycolytic enzyme mRNA as well as ATP production activation.

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center