Send to

Choose Destination
See comment in PubMed Commons below
Mutat Res. 2011 Dec 1;717(1-2):77-84. doi: 10.1016/j.mrfmmm.2011.03.008. Epub 2011 Mar 21.

Epigenetic regulation of microRNAs in cancer: an integrated review of literature.

Author information

Department of Animal Science, University of Ljubljana, Domzale, Slovenia.


MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs) that regulate the translation and degradation of target mRNAs, and control approximately 30% of human genes. MiRNA genes might be silenced in human tumors (oncomiRs) by aberrant hypermethylation of CpG islands that encompass or lie adjacent to miRNA genes and/or by histone modifications. We performed literature search for research articles describing epigenetically regulated miRNAs in cancer and identified 45 studies that were published between 2006 and 7/2010. The data from those papers are fragmented and methodologically heterogeneous and our work represents first systematic review towards to integration of diverse sets of information. We reviewed the methods used for detection of miRNA epigenetic regulation, which comprise bisulfite genomic sequencing PCR (BSP), bisulfite pyrosequencing, methylation specific PCR (MSP), combined bisulfite restriction analysis (COBRA), methylation sensitive single nucleotide primer extension (Ms-SNuPE), MassARRAY technique and some modifications of those methods. This integrative study revealed 122 miRNAs that were reported to be epigenetically regulated in 23 cancer types. Compared to protein coding genes, human oncomiRs showed an order of magnitude higher methylation frequency (11.6%; 122/1048 known miRNAs). Nearly half, (45%; 55/122) epigenetically regulated miRNAs were associated with different cancer types, but other 55% (67/122) miRNAs were present in only one cancer type and therefore representing cancer-specific biomarker potential. The data integration revealed miRNA epigenomic hot spots on the chromosomes 1q, 7q, 11q, 14q and 19q. CpG island analysis of corresponding miRNA precursors (pre-miRNAs) revealed that 20% (26/133) of epigenetically regulated miRNAs had a CpG island within the range of 5kb upstream, among them 14% (19/133) of miRNAs resided within the CpG island. Our integrative survey and analyses revealed candidate cancer-specific miRNA epigenetic signatures which provide the basis for new therapeutic strategies in cancer by targeting the epigenetic regulation of miRNAs.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center