Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2011 Jul;32(19):4327-35. doi: 10.1016/j.biomaterials.2011.02.052. Epub 2011 Mar 21.

Cell behavior on protein matrices containing laminin α1 peptide AG73.

Author information

1
Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.

Abstract

Collagen has been widely used for tissue engineering. Here, we applied bioactive laminin-derived peptides as an additive for collagen, laminin-111, and fibronectin matrices resulting in peptide/collagen, peptide/laminin-111, and peptide/fibronectin matrices. Several syndecan-binding peptides, including AG73 (RKRLQVQLSIRT), enhanced the cell attachment activity of collagen matrices. AG73 synergistically enhanced not only cell attachment but also cell spreading on collagen matrices. AG73 also enhanced integrin-binding to the collagen matrices, including organization of actin stress fibers and promotion of Tyr397-focal adhesion kinase (FAK) phosphorylation. Additionally, AG73 enhanced neurite outgrowth on collagen matrices. These results suggest that the integrin-mediated biological activity of collagen matrices is synergistically enhanced by the syndecan-mediated cellular function of AG73. Further, cell attachment and spreading activity of laminin-111 and fibronectin matrices was also synergistically enhanced by AG73. The syndecan-binding peptides are useful to enhance the integrin-mediated biological activities of extracellular matrix (ECM) proteins, such as collagen, laminin-111, and fibronectin. The peptide/matrix mixed method is a new concept for biomaterial fabrication and has the potential for wide use in cell and tissue engineering.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center