Format

Send to

Choose Destination
See comment in PubMed Commons below
Nitric Oxide. 2011 May 31;24(4):184-91. doi: 10.1016/j.niox.2011.03.003. Epub 2011 Mar 17.

Shear stress activation of nitric oxide synthase and increased nitric oxide levels in human red blood cells.

Author information

1
Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.

Abstract

Red blood cells (RBC) play an important role in the balance between generation and scavenging of nitric oxide (NO) and hence its local bioavailability and influence on vasomotor control. Previous studies have reported increased NO levels in RBC suspensions subsequent to exposure to shear forces; the present study was designed to further investigate changes in intracellular NO concentration and possible mechanisms involved for RBC exposed to well-controlled shear forces. Attached human RBC were subjected to shear stresses up to 0.1Pa in a parallel-plate flow channel; fluorescent methods were used to monitor changes in intracellular NO and calcium concentrations. Intracellular NO concentration, estimated by the fluorescence level of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM), increased sharply within 30s following the application of shear stress between 0.013 and 0.1Pa. This increase was only partially prevented by the absence of l-arginine and by the presence of l-N-acetyl-methyl-arginine (L-NAME), strongly suggesting that this response was in part related to the activation of NO-synthase (NOS) enzyme. The increase in intracellular NO concentration under shear stress was also inhibited by calcium chelation in the suspending medium, indicating the role of calcium entry for NOS activation. Increases of intracellular calcium concentrations under the same shearing conditions were demonstrated by monitoring Fluo-3/AM fluorescence in RBC exposed to shear stress. Serine 1177 phosphorylated NOS protein, the activated form of the enzyme determined by immunohistochemistry, was found to be significantly increased following the exposure of RBC to 0.1Pa shear stress for 1min. These data confirm that RBC possess a NOS enzyme that is actively synthesizing NO and activated by effective shear forces. The data also suggest that there may be additional (e.g., non-enzymatic) NO generating mechanisms in RBC that are also enhanced under shear stress.

PMID:
21419856
PMCID:
PMC3101311
DOI:
10.1016/j.niox.2011.03.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center