Format

Send to

Choose Destination
J Med Chem. 2011 Apr 14;54(7):2049-59. doi: 10.1021/jm1010918. Epub 2011 Mar 18.

5-Benzamidoisoquinolin-1-ones and 5-(ω-carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2).

Author information

1
Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Abstract

PARP-2 is a member of the poly(ADP-ribose) polymerase family, with some activities similar to those of PARP-1 but with other distinct roles. Two series of isoquinolin-1-ones were designed, synthesized, and evaluated as selective inhibitors of PARP-2, using the structures of the catalytic sites of the isoforms. A new efficient synthesis of 5-aminoisoquinolin-1-one was developed, and acylation with acyl chlorides gave 5-acylaminoisoquinolin-1-ones. By examination of isoquinolin-1-ones with carboxylates tethered to the 5-position, Heck coupling of 5-iodoisoquinolin-1-one furnished the 5-CH═CHCO(2)H compound for reduction to the 5-propanoic acid. Alkylation of 5-aminoisoquinolin-1-one under mildly basic conditions, followed by hydrolysis, gave 5-(carboxymethylamino)isoquinolin-1-one, whereas it was alkylated at 2-N with methyl propenoate and strong base. Compounds were assayed in vitro for inhibition of PARP-1 and PARP-2, using FlashPlate and solution-phase assays, respectively. The 5-benzamidoisoquinolin-1-ones were more selective for inhibition of PARP-2, whereas the 5-(ω-carboxyalkyl)isoquinolin-1-ones were less so. 5-Benzamidoisoquinolin-1-one is the most PARP-2-selective compound (IC(50(PARP-1))/IC(50(PARP-2)) = 9.3) to date, in a comparative study.

PMID:
21417348
DOI:
10.1021/jm1010918
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center