Send to

Choose Destination
J Phys Chem A. 2011 Apr 14;115(14):2978-84. doi: 10.1021/jp111990z. Epub 2011 Mar 18.

Perturbation analysis of the υ = 6 level in the d3Δ state of CS based on its near-infrared absorption spectrum.

Author information

State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China.


The spectrum of CS was recorded in the region of 12,086-12,630 cm(-1) by employing optical heterodyne concentration modulation laser absorption spectroscopy. Nearly 350 transitions were assigned to the (6, 0) band in the d(3)Δ-a(3)Π system of CS. The overtone transitions of the (12, 0) band in the a(3)Π(2)-a(3)Π(0) transition were first observed due to the perturbation interaction between d(3)Δ(1) and a(3)Π(2). The Λ doubling in the a(3)Π(1) state was also resolved at high rotational levels. The molecular constants of the a(3)Π (υ = 0) and d(3)Δ (υ = 6) levels and the perturbation parameters of the d(3)Δ (υ = 6) level were determined through nonlinear least-squares fitting using effective hamiltonians. The calculations of mixing fractions of the perturbed states were performed in order to obtain precise information on the perturbations of the d(3)Δ (υ = 6) levels. The mechanisms for perturbations of d(3)Δ (υ = 6) with the a(3)Π (υ = 12) and A(1)Π (υ = 1) levels, especially for the second-order perturbation, were discussed and explained according to first-order nondegenerate perturbation theory.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center