Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2011 Apr 19;50(15):3240-9. doi: 10.1021/bi200094z. Epub 2011 Mar 28.

Interactions between the etoposide derivative F14512 and human type II topoisomerases: implications for the C4 spermine moiety in promoting enzyme-mediated DNA cleavage.

Author information

1
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States.

Abstract

F14512 is a novel etoposide derivative that contains a spermine in place of the C4 glycosidic moiety. The drug was designed to exploit the polyamine transport system that is upregulated in some cancers. However, a preliminary study suggests that it is also a more efficacious topoisomerase II poison than etoposide [Barret et al. (2008) Cancer Res. 68, 9845-9853]. Therefore, we undertook a more complete study of the actions of F14512 against human type II topoisomerases. As determined by saturation transfer difference (1)H NMR spectroscopy, contacts between F14512 and human topoisomerase IIα in the binary enzyme-drug complex are similar to those of etoposide. Although the spermine of F14512 does not interact with the enzyme, it converts the drug to a DNA binder [Barret et al. (2008)]. Consequently, the influence of the C4 spermine on drug activity was assessed. F14512 is a highly active topoisomerase II poison and stimulates DNA cleavage mediated by human topoisomerase IIα or topoisomerase IIβ. The drug is more potent and efficacious than etoposide or TOP-53, an etoposide derivative that contains a C4 aminoalkyl group that strengthens drug-enzyme binding. Unlike the other drugs, F14512 maintains robust activity in the absence of ATP. The enhanced activity of F14512 correlates with a tighter binding and an increased stability of the ternary topoisomerase II-drug-DNA complex. The spermine-drug core linkage is critical for these attributes. These findings demonstrate the utility of a C4 DNA binding group and provide a rational basis for the development of novel and more active etoposide-based topoisomerase II poisons.

PMID:
21413765
PMCID:
PMC3086367
DOI:
10.1021/bi200094z
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center