Send to

Choose Destination
J Phys Condens Matter. 2010 Dec 22;22(50):506001. doi: 10.1088/0953-8984/22/50/506001. Epub 2010 Nov 26.

Atomic and magnetic order in the shape memory alloy Mn2NiGa.

Author information

Department of Physics, Loughborough University, UK.


Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory alloy Mn(2)NiGa have confirmed that it is ferromagnetic with a Curie temperature above 500 K. The compound undergoes a broad structural phase transformation ΔT ∼ 90 K with a mean transition temperature T(M) ∼ 270 K. The high temperature parent phase is cubic (a = 5.937 Å) and has a modified L 2(1) structure. At 500 K the ordered magnetic moment essentially all on the 4a site is 1.35 μ(B)/Mn. The low temperature martensite has space group I4/mmm and is related to the cubic phase through a Bain transformation a(tet) = (a(cub) + b(cub))/2, b(tet) = (a(cub) - b(cub)) and c(tet) = c(cub) in which the change in cell volume is < 2.6%. In this structure at 5 K the ordered moment of ≈2.3 μ(B) is again found to be confined to the sites with full Mn occupation and is aligned parallel to c. Neutron diffraction patterns obtained at 5 K suggested the presence of a weak incommensurate antiferromagnetic phase characterized by either a ((1/3)0(1/3)) or (00(1/3)) propagation vector.

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center