Send to

Choose Destination
Magn Reson Med. 2011 Jun;65(6):1776-85. doi: 10.1002/mrm.22765. Epub 2011 Mar 14.

Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking.

Author information

Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA.


Biodegradable, superparamagnetic microparticles and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated, and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into microparticles and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt % for PLGA and 69.6 wt % for cellulose). While PLGA and cellulose nanoparticles displayed highest r 2* values per millimole of iron (399 sec(-1) mM(-1) for cellulose and 505 sec(-1) mM(-1) for PLGA), micron-sized PLGA particles had a much higher r 2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r 2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r 2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for noninvasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long-term (cellulose-based particles) experiments.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center