Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 May 13;286(19):16583-95. doi: 10.1074/jbc.M111.222158. Epub 2011 Mar 14.

Notch- and transducin-like enhancer of split (TLE)-dependent histone deacetylation explain interleukin 12 (IL-12) p70 inhibition by zymosan.

Author information

1
Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid, Spain.

Abstract

The fungal analog zymosan induces IL-23 and low amounts of IL-12 p70. This study addresses the molecular mechanisms underlying this cytokine pattern in human monocyte-derived dendritic cells. The transcriptional regulation of il23a, one of the chains of IL-23, depended on the activation of c-Rel and histone H3 phosphorylation, as judged from the association of c-Rel with the il23a promoter and the correlation between IL-23 production and Ser-10-histone H3 phosphorylation. Consistent with its reduced ability to produce IL-12 p70, zymosan induced a transient occupancy of the il12a promoter by c-Rel, blocked the production of IL-12 p70 and the transcription of il12a induced by other stimuli, and triggered the expression and nuclear translocation of the transcriptional repressors of the Notch family hairy and enhancer of split (Hes)-1, Hes5, hairy/enhancer-of-split related with YRPW motif protein (Hey)-1, and transducin-like enhancer of split (TLE). Zymosan also induced the interaction of Hes1 and TLE with histone H3 phosphorylated on Ser-10 and deacetylated on Lys-14. Inhibition of class III histone deacetylases increased the production of IL-12 p70 and partially blunted the inhibitory effect of zymosan on the production of IL-12 p70 elicited by LPS and IFN-γ. These results indicate that the selective induction of IL-23 by β-glucans is explained by the activation of c-Rel associated with Ser-10-histone H3 phosphorylation in the il23a promoter mediated by mitogen- and stress-activated kinase and/or protein kinase A and inhibition of il12a transcription by a mechanism involving activation of several corepressors with the ability to bind TLE and to promote histone deacetylation.

PMID:
21402701
PMCID:
PMC3089501
DOI:
10.1074/jbc.M111.222158
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center