Send to

Choose Destination
See comment in PubMed Commons below
Cancer Gene Ther. 2011 Jun;18(6):407-18. doi: 10.1038/cgt.2011.8. Epub 2011 Mar 11.

Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models.

Author information

Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA.


Tumor-associated antigens (TAAs) include overexpressed self-antigens (for example, Her2/neu) and tumor virus antigens (for example, HPV-16 E6/E7). Although in cancer patients, TAA-specific CD4+ and CD8+ cells are often present, they are not able to control tumor growth. In recent studies, it became apparent that tumor site-located immune evasion mechanisms contribute to this phenomenon and that regulatory T cells have a major role. We tested in Her2/neu+ breast cancer and HPV-16 E6/E7+ cervical cancer mouse models, whether intratumoral expression of immunostimulatory proteins (ISPs), for example, recombinant antibodies (αCTLA-4, αCD137, αCD3), cyto/chemokines (IL-15, LIGHT, mda-7) and costimulatory ligands (CD80), through adenovirus(Ad)-mediated gene transfer would overcome resistance. In both the breast and cervical cancer model, none of the Ad.ISP vectors displayed a significant therapeutic effect when compared with an Ad vector that lacked a transgene ( However, the combination of Ad.ISP vectors with systemic T regulatory (Treg) depletion, using anti-CD25 mAb (breast cancer model) or low-dose cyclophosphamide (cervical cancer model) resulted in a significant delay of tumor growth in mice treated with Ad.αCTLA4. In the cervical cancer model, we also demonstrated the induction of a systemic antitumor immune response that was able to delay the growth of distant tumors. Ad.αCTLA4-mediated tumor-destructive immune responses involved NKT and CD8+ T cells. In both models no autoimmune reactions were observed. This study shows that Ad.αCTLA4 in combination with systemic Treg depletion has potentials in the immunotherapy of cancer.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center