Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2011 May;117(4):613-22. doi: 10.1111/j.1471-4159.2011.07237.x. Epub 2011 Mar 28.

Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer's disease.

Author information

1
Department of Neurosciences, University of California, San Diego, La Jolla, California 92093-0624, USA. rrissman@ucsd.edu

Abstract

In addition to progressive dementia, Alzheimer's disease (AD) is characterized by increased incidence of seizure activity. Although originally discounted as a secondary process occurring as a result of neurodegeneration, more recent data suggest that alterations in excitatory-inhibitory (E/I) balance occur in AD and may be a primary mechanism contributing AD cognitive decline. In this study, we discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD. Stressing the importance of understanding the subunit composition of individual GABA(A) receptors, investigations demonstrate alterations of particular GABA(A) receptor subunits in AD, but overall sparing of the GABAergic system. In this study, we review experimental data on the GABAergic system in the pathobiology of AD and discuss relevant therapeutic implications. When developing AD therapeutics that modulate GABA it is important to consider how E/I balance impacts AD pathogenesis and the relationship between seizure activity and cognitive decline.

PMID:
21388375
PMCID:
PMC3127285
DOI:
10.1111/j.1471-4159.2011.07237.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center