Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4926-31. doi: 10.1073/pnas.1010010108. Epub 2011 Mar 7.

Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.

Author information

1
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02 106 Warsaw, Poland.

Abstract

Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB-CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.

PMID:
21383183
PMCID:
PMC3064340
DOI:
10.1073/pnas.1010010108
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center