Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bone Miner Res. 2011 Aug;26(8):1740-7. doi: 10.1002/jbmr.381.

Influence of a 3-year exercise intervention program on fracture risk, bone mass, and bone size in prepubertal children.

Author information

  • 1Clinical and Molecular Osteoporosis Research Unit, Department of Orthopaedics, Lund University, Skane University Hospital, Malmö, Sweden. bjarne.lofgren@med.lu.se

Abstract

Published prospective pediatric exercise intervention studies are short term and use skeletal traits as surrogate endpoints for fractures, whereas other reports infer exercise to be associated with more trauma and fractures. This prospective, controlled exercise intervention study therefore followed both skeletal traits and fracture risk for 36 months. Fractures were registered in children aged 7 to 9 years; there were 446 boys and 362 girls in the intervention group (2129 person-years) and 807 boys and 780 girls in the control group (4430 person-years). The intervention included school physical education of 40 minutes per day for 3 years. The control children achieved the Swedish standard of 60 minutes per week. In a subsample of 76 boys and 48 girls in the intervention group and 55 boys and 44 girls in the control group, bone mineral content (BMC, g) and bone width (cm) were followed in the lumbar spine and hip by dual-energy X-ray absorptiometry (DXA). The rate ratio (RR) for fractures was 1.08 (0.71, 1.62) [mean (95% confidence interval)]. In the DXA-measured children, there were no group differences at baseline in age, anthropometrics, or bone traits. The mean annual gain in the intervention group in lumbar spine BMC was 0.9 SD higher in girls and 0.8 SD higher in boys (both p < .001) and in third lumbar vertebra width 0.4 SD higher in girls and 0.3 SD higher in boys (both p < .05) than in control children. It is concluded that a moderately intense 3-year exercise program in 7- to 9-year-old children increases bone mass and possibly also bone size without increasing fracture risk.

PMID:
21381112
DOI:
10.1002/jbmr.381
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center