Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Chem. 2009 Apr;1(1):74-9. doi: 10.1038/nchem.112.

Halogen bonds as orthogonal molecular interactions to hydrogen bonds.

Author information

  • 1Department of Biochemistry and Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523-1870, USA.

Abstract

Halogen bonds (X-bonds) are shown to be geometrically perpendicular to and energetically independent of hydrogen bonds (H-bonds) that share a common carbonyl oxygen acceptor. This orthogonal relationship is accommodated by the in-plane and out-of-plane electronegative potentials of the oxygen, which are differentially populated by H- and X-bonds. Furthermore, the local conformation of a peptide helps to define the geometry of the H-bond and thus the oxygen surface that is accessible for X-bonding. These electrostatic and steric forces conspire to impose a strong preference for the orthogonal geometry of X- and H-bonds. Thus, the optimum geometry of an X-bond can be predicted from the pattern of H-bonds in a folded protein, enabling X-bonds to be introduced to improve ligand affinities without disrupting these structurally important interactions. This concept of orthogonal molecular interactions can be exploited for the rational design of halogenated ligands as inhibitors and drugs, and in biomolecular engineering.

PMID:
21378804
DOI:
10.1038/nchem.112
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center