In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy

J Control Release. 2011 Apr 30;151(2):104-9. doi: 10.1016/j.jconrel.2011.02.011. Epub 2011 Mar 3.

Abstract

Surface modification using poly(ethylene glycol) (PEG) is a widely used strategy to improve the biocompatibility of cationic polymer-based nonviral gene vectors (polyplexes). A novel method based on intravital real-time confocal laser scanning microscopy (IVRTCLSM) was applied to quantify the dynamic states of polyplexes in the bloodstream, thereby demonstrating the efficacy of PEGylation to prevent their agglomeration. Blood flow in the earlobe blood vessels of experimental animals was monitored in a noninvasive manner to directly observe polyplexes in the circulation. Polyplexes formed distinct aggregates immediately after intravenous injection, followed by interaction with platelets. To quantify aggregate formation and platelet interaction, the coefficient of variation and Pearson's correlation coefficient were adopted. In contrast, polyplex micelles prepared through self-assembly of plasmid DNA with PEG-based block catiomers had dense PEG palisades, revealing no formation of aggregates without visible interaction with platelets during circulation. This is the first report of in situ monitoring and quantification of the availability of PEGylation to prevent polyplexes from agglomeration over time in the blood circulation. This shows the high utility of IVRTCLSM in drug and gene delivery research.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Circulation / physiology
  • Blood Platelets / chemistry
  • Computer Systems*
  • Ear Auricle / blood supply*
  • Ear Auricle / chemistry*
  • Ear Auricle / drug effects
  • Female
  • Genetic Vectors / administration & dosage
  • Genetic Vectors / analysis*
  • Injections, Intravenous
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Micelles*
  • Microscopy, Confocal / methods
  • Polyethylene Glycols / administration & dosage
  • Polyethylene Glycols / analysis*

Substances

  • Micelles
  • Polyethylene Glycols