Send to

Choose Destination
Arch Biochem Biophys. 2011 May 1;509(1):26-32. doi: 10.1016/ Epub 2011 Mar 2.

Cytochrome b₅ reductase-cytochrome b₅ as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2.

Author information

Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA.


Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b₅ reductase-cyt b₅. In fungi, limited information is available for the cyt b(5) reductase-cyt b(5) system. Here we characterized the kinetic mechanism of (cyt b₅r)-cyt b₅ redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b₅r followed a "ping-pong" mechanism and could directly reduce cytochrome c. However, unlike other cyt b₅ reductases, Pc-cyt b₅r lacked the typical ferricyanide reduction activity, a standard for cyt b₅ reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b₅r-cyt b₅ complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b₅r-cyt b₅ complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b₅r-cyt b₅) in terms of supporting a P450 monooxygenase activity.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center