Send to

Choose Destination
See comment in PubMed Commons below
ChemMedChem. 2011 Apr 4;6(4):698-712. doi: 10.1002/cmdc.201000535. Epub 2011 Mar 4.

Novel cinnamyl hydroxyamides and 2-aminoanilides as histone deacetylase inhibitors: apoptotic induction and cytodifferentiation activity.

Author information

  • 1Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.


Four novel series of cinnamyl-containing histone deacetylase (HDAC) inhibitors 1-4 are described, containing hydroxamate (1 and 3) or 2-aminoanilide (2 and 4) derivatives. When screened against class I (maize HD1-B and human HDAC1) and class II (maize HD1-A and human HDAC4) HDACs, most hydroxamates and 2-aminoanilides displayed potent and selective inhibition toward class I enzymes. Immunoblotting analyses performed in U937 leukemia cells generally revealed high acetyl-H3 and low acetyl-α-tubulin levels. Exceptions are compounds 3 f-i, 3 m-o, and 4 k, which showed higher tubulin acetylation than SAHA. In U937 cells, cell-cycle blockade in either the G₂/M or G₁/S phase was observed with 1-4. Five hydroxamates (compounds 1 h-l) effected a two- to greater than threefold greater percent apoptosis than SAHA, and in the CD11c cytodifferentiation test some 2-aminoanilides belonging to both series 2 and 4 were more active than MS-275. The highest-scoring derivatives in terms of apoptosis (1 k, 1 l) or cytodifferentiation (2 c, 4 n) also showed antiproliferative activity in U937 cells, thus representing valuable tools for study in other cancer contexts.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center