Send to

Choose Destination
Cell Death Dis. 2010 Aug 26;1:e68. doi: 10.1038/cddis.2010.45.

Potent antitumoral activity of TRAIL through generation of tumor-targeted single-chain fusion proteins.

Author information

Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.


In an attempt to improve TRAIL's (tumor necrosis factor-related apoptosis-inducing ligand) tumor selective activity a variant was designed, in which the three TRAIL protomers are expressed as a single polypeptide chain (scTRAIL). By genetic fusion with a single-chain antibody fragment (scFv) recognizing the extracellular domain of ErbB2, we further equipped scTRAIL with tumor-targeting properties. We studied tumor targeting and apoptosis induction of scFv-scTRAIL in comparison with non-targeted scTRAIL. Importantly, the tumor antigen-targeted scTRAIL fusion protein showed higher apoptotic activity in vitro, with a predominant action by TRAIL-R2 signaling. Pharmacokinetic studies revealed increased plasma half-life of the targeted scTRAIL fusion protein compared with scTRAIL. In vivo studies in a mouse tumor model with xenotransplanted Colo205 cells confirmed greater response to the ErbB2-specific scTRAIL fusion protein compared with non-targeted scTRAIL both under local and systemic application regimen. Together, in vitro and in vivo data give proof of concept of higher therapeutic activity of tumor-targeted scFv-scTRAIL molecules. Further, we envisage that through targeting of scTRAIL, potential side effects should be minimized. We propose that scFv-mediated tumor targeting of single-chain TRAIL represents a promising strategy to improve TRAIL's antitumoral action and to minimize potential unwanted actions on normal tissues.Cell Death and Disease (2010) 1, e68; doi:10.1038/cddis.2010.45; published online 26 August 2010.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center