Send to

Choose Destination
See comment in PubMed Commons below
Mol Biotechnol. 2011 Oct;49(2):159-65. doi: 10.1007/s12033-011-9387-5.

Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco.

Author information

Department of Biology, East Carolina University, Greenville, NC 27858, USA.


Drought and salinity stresses significantly altered microRNA (miRNA) expression in a dose-dependent manner in tobacco. Salinity stress changed the miRNA expression levels from a 6.86-fold down-regulation to a 616.57-fold up-regulation. Alternatively, miRNAs were down-regulated by 2.68-fold and up-regulated 2810-fold under drought conditions. miR395 was most sensitive to both stresses and was up-regulated by 616 and 2810-folds by 1.00% PEG and 0.171 M NaCl, respectively. Salinity and drought stresses also changed the expression of protein-coding genes [alcohol dehydrogenase (ADH) and alcohol peroxidase (APX)]. The results suggest that miRNAs may play an important role in plant response to environmental abiotic stresses. Further investigation of miRNA-mediated gene regulation may elucidate the molecular mechanism of plant tolerance to abiotic stresses and has the potential to create a miRNA-based biotechnology for improving plant tolerance to drought and salinity stresses.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center