Send to

Choose Destination
J Immunol. 2011 Apr 1;186(7):3953-65. doi: 10.4049/jimmunol.1003305. Epub 2011 Feb 25.

Role of SLAM in NKT cell development revealed by transgenic complementation in NOD mice.

Author information

Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia.


Allelic variation of SLAM expression on CD4(+)CD8(+) thymocytes has been proposed to play a major role in NKT cell development. In this article, this hypothesis is tested by the production of subcongenic mouse strains and Slamf1 transgenic lines. The long isoform of the C57BL/6 allele of Slamf1 was transgenically expressed on CD4(+)CD8(+) thymocytes under control of an hCD2 minigene. NOD.Nkrp1b.Tg(Slamf1)1 mice, which had a 2-fold increase in SLAM protein expression on CD4(+)CD8(+) thymocytes, had a 2-fold increase in numbers of thymic NKT cells. The additional thymic NKT cells in NOD.Nkrp1b.Tg(Slamf1)1 mice were relatively immature, with a similar subset distribution to those of congenic NOD.Nkrp1b.Nkt1 and NOD.Nkrp1b.Slamf1 mice, which also express increased levels of SLAM on CD4(+)CD8(+) thymocytes and produce larger numbers of NKT cells. Transgenic enhancement of SLAM expression also increased IL-4 and IL-17 production in response to TCR-mediated stimulation. Paradoxically, NOD.Nkrp1b.Tg(Slamf1)2 mice, which had a 7-fold increase in SLAM expression, showed no significant increase in NKT cells numbers; on the contrary, at high transgene copy number, SLAM expression levels correlated inversely with NKT cell numbers, consistent with a contribution to negative selection. These data confirm a role for SLAM in controlling NKT cell development and are consistent with a role in both positive and negative thymic selection of NKT cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center