Radiation doses to members of the U.S. population from ubiquitous radionuclides in the body: Part 2, methods and dose calculations

Health Phys. 2011 Apr;100(4):377-401. doi: 10.1097/HP.0b013e318203d9a7.

Abstract

This paper is Part 2 of a three-part series investigating effective dose rates to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling (222)Rn, (220)Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. In this work, it is assumed that instantaneous dose rates in target organs are proportional to steady-state radionuclide concentrations in source regions. Part 1 reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Assumptions about equilibrium with long-lived parents are made for the 28 other radionuclides in these series lacking data. This paper describes the methods developed to group the collected data into source regions described in the Radiation Dose Assessment Resource (RADAR) dosimetric methodology. Methods for converting the various units of data published over 50 y into a standard form are developed and described. Often, meaningful values of uncertainty of measurements were not published, so that variability in data sets is confounded with measurement uncertainty. A description of the methods developed to estimate variability is included in this paper. The data described in Part 1 are grouped by gender and age to match the RADAR dosimetric phantoms. Within these phantoms, concentration values are grouped into source tissue regions by radionuclide, and they are imputed for source regions lacking tissue data. Radionuclide concentrations are then imputed for the source regions of other phantoms with missing concentration values, and the uncertainties of the imputed values are increased. The concentrations of hollow organs' contents are calculated, and activities are apportioned to the bone source regions using assumptions about each radionuclide's bone-seeking behavior. The data sets are then ready to be used to estimate equivalent dose rates to target tissues from these source regions. The target tissues are then mapped to lists of tissues with International Commission on Radiation Protection (ICRP) tissue weighting factors, or they are mapped to surrogate tissue regions when there is no direct match. Effective dose rates, using ICRP tissue weighting factors recommended in 1977, 1990, and 2007, can be calculated from the tissue and organ equivalent dose rates. These effective dose rates are reported in Part 3 of this series.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Child
  • Child, Preschool
  • Female
  • Humans
  • Infant
  • Male
  • Middle Aged
  • Quality Control
  • Radiation Dosage*
  • Radioisotopes / analysis*
  • Radiometry / methods*
  • Radiometry / standards
  • Statistics as Topic
  • United States
  • Young Adult

Substances

  • Radioisotopes