Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2011 Apr 13;59(7):3111-7. doi: 10.1021/jf104385d. Epub 2011 Feb 22.

Bioaccumulation of melamine in catfish muscle following continuous, low-dose, oral administration.

Author information

1
Animal Drugs Research Center, U.S. Food and Drug Administration Denver Federal Center, Building 20, West Sixth Avenue and Kipling Boulevard, Denver, Colorado 80225, United States.

Abstract

In this study, catfish muscle was analyzed for melamine (MEL) and cyanuric acid (CYA) residues following experimental feeding with low doses of MEL and MEL and CYA (MEL+CYA) and with the insoluble melamine-cyanurate complex (MEL=CYA). Catfish were daily fed 0.1 mg/kg BW of MEL for 15, 28, or 42 days, 0.1 mg/kg BW of MEL+CYA for 28 days, 2.5 mg/kg BW of MEL+CYA for 14 days, or 400 mg/kg BW of MEL=CYA for 3 days. Residues in the tissue were determined by LC-MS/MS. MEL was extracted with acidic acetonitrile, followed by defatting with dichloromethane, and isolated with cation exchange solid phase extraction (SPE). For CYA analysis, fish were extracted with dilute acetic acid, defatted with hexane, and cleaned up with a graphitic carbon SPE. Catfish fed 0.1 mg/kg BW of MEL reached a maximum muscle residue concentration of 0.33 ± 0.04 mg/kg (ppm) after 28 days of continuous feeding. The same concentration was found for MEL+CYA feeding at the 0.1 mg/kg BW level for 28 days. Feeding at 2.5 mg/kg BW of MEL+CYA yielded muscle concentrations above the 2.5 mg/kg level of concern for most of the study fish. Finally, catfish fed high levels of the MEL=CYA complex (400 mg/kg BW) accumulated relatively little MEL in the muscle (0.14 ± 0.07 mg/kg) and, unlike treatment with MEL+CYA, did not form renal melamine-cyanurate crystals. Appreciable concentrations of CYA were not detected in any of the muscles tested. These studies provide data to model the bioaccumulation of triazine residues into edible fish tissue as a result of the continuous consumption of adulterated feed.

PMID:
21341666
DOI:
10.1021/jf104385d
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center