Format

Send to

Choose Destination
See comment in PubMed Commons below
Angew Chem Int Ed Engl. 2011 Mar 14;50(12):2680-8. doi: 10.1002/anie.201003863. Epub 2011 Feb 21.

The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious.

Author information

1
Max Planck Institute for Biochemistry, Martinsried, Germany.

Abstract

The p53 protein is the cell's principal bastion of defense against tumor-associated DNA damage. Commonly referred as a "guardian of the genome", p53 is responsible for determining the fate of the cell when the integrity of its genome is damaged. The development of tumors requires breaching this defense line. All known tumor cells either mutate the p53 gene, or in a similar number of cases, use internal cell p53 modulators, Mdm2 and Mdmx proteins, to disable its function. The release of functional p53 from the inhibition by Mdm2 and Mdmx should in principle provide an efficient, nongenotoxic means of cancer therapy. In recent years substantial progress has been made in developing novel p53-activating molecules thanks to several reported crystal structures of Mdm2/x in complex with p53-mimicking peptides and nonpeptidic drug candidates. Understanding the structural attributes of ligand binding holds the key to developing novel, highly effective, and selective drug candidates. Two low-molecular-weight compounds have just recently progressed into early clinical studies.

PMID:
21341346
PMCID:
PMC3113661
DOI:
10.1002/anie.201003863
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center