Send to

Choose Destination
See comment in PubMed Commons below
J Mol Microbiol Biotechnol. 2011;20(1):29-42. doi: 10.1159/000322917. Epub 2011 Feb 19.

Involvement of residues Asp8, Asn13, Glu145, Asp168, and Thr173 in the chaperone activity of a recombinant DnaK from Bacillus licheniformis.

Author information

Departments of Biochemical Science and Biotechnology, National Chiayi University, Chiayi, Taiwan, ROC.


Based on the sequence homology, we have modeled the three-dimensional structure of Bacillus licheniformis DnaK (BlDnaK), a counterpart of Hsp70, and identified five different amino acids that might be responsible for maintaining ADP-Mg(2+)-Pi in the correct configuration at the ATP-binding cleft of the protein. As compared with wild-type BlDnaK, site-directed mutant proteins D8A, N13D, E145A, D168A, and T173A had a dramatic reduction in their chaperone activities. Complementation test revealed that the mutant proteins lost completely the ability to rescue the temperature-sensitive growth defect of Escherichia colidnaK756-ts. Wild-type BlDnak assisted the refolding of denatured firefly luciferase, whereas a significant decrease in this ability was observed for the mutant proteins. Simultaneous addition of B. licheniformis DnaJ, BlGrpE, and NR-peptide, did not synergistically stimulate the ATPase activity of D8A, E145A, D168A and T173A. Circular dichroism spectra were nearly identical for wild-type and mutant proteins, and they, except D8A, also exhibited a similar sensitivity towards temperature-induced denaturation. These results suggest that the selected residues are critical for the proper function of BlDnaK.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Support Center