Send to

Choose Destination
J Hand Surg Am. 2011 Mar;36(3):450-5. doi: 10.1016/j.jhsa.2010.11.029. Epub 2011 Feb 17.

Influence of locking stitch size in a four-strand cross-locked cruciate flexor tendon repair.

Author information

Surgical and Orthopaedic Research Laboratories, University of New South Wales, Prince of Wales Hospital, Sydney, Australia.



The 4-strand cross-locked cruciate technique (Adelaide technique) for repairing flexor tendons in zone II is a favorable method in terms of strength and simplicity. The purpose of this study was to investigate the effects of varying the cross-lock stitch size in this repair technique. Outcomes measured were load to failure and gap formation.


We harvested 22 deep flexor tendons from adult pig forelimbs and randomly allocated them into 2 groups. After cutting the tendons at a standard point, we performed a 4-strand cross-locked cruciate repair using 3-0 braided polyester with either 2-mm cross-locks (n = 11) or 4-mm cross-locks (n = 11). All repairs were completed with a simple running peripheral suture using 6-0 polypropylene. Repaired tendons were loaded to failure and the mechanism of failure, load to failure, stiffness, and load to 2-mm gap formation were determined.


All repairs failed by suture breakage; we noted no suture pullout. There was no difference in load to failure (71.7-71.1 N; p = .89) or stiffness (4.1-4.6 N/mm; p = .23) between the 2-mm cross-lock and the 4-mm cross-lock groups. There was a trend toward higher resistance to 2-mm gap formation with the 4-mm cross-locks (55-62.2 N; p = .07).


Four-strand cross-locked cruciate repairs with cross-lock sizes of 2 and 4 mm provide high tensile strength and are resistant to pullout. Repairs with 4-mm cross-locks tend to provide a more central load distribution and better gapping resistance than repairs with 2-mm cross-locks.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center