Send to

Choose Destination
See comment in PubMed Commons below
J Anat. 2011 May;218(5):544-57. doi: 10.1111/j.1469-7580.2011.01351.x. Epub 2011 Feb 21.

The effects of hypermuscularity on shoulder morphology in myostatin-deficient mice.

Author information

  • 1Department of Anthropology, The George Washington University, 2110 G St., NW, Washington, DC 20052, USA.


Mechanical loads, particularly those generated by skeletal muscle, play a significant role in determining long-bone shape and strength, but it is less clear how these loads influence the morphology of flat bones like the scapula. While scapular morphology has been shown to vary with locomotor mode in mammals, this study seeks to better understand whether genetically modified muscle size can influence scapular shape in the absence of significant locomotor differences. The soft- and hard-tissue morphological characteristics were examined in 11 hypermuscular, mutant (myostatin-deficient), 20 heterozygote, and 15 wild-type mouse shoulders. Body mass did not significantly differ among the genotype groups, but homozygous mutant and heterozygote mice had significantly larger shoulder muscles than wild-type mice. Mutant mice also differed significantly from the wild-type controls in several aspects of scapular size and shape, including glenohumeral joint orientation, total scapular length, superior border length, and supraspinous and infraspinous fossa length. Conversely, several traits describing superoinferior scapular breadth measures (e.g. total breadth and dorsal scapular fossa breadth) did not significantly differ between mutant and wild-type mice. Since the intrinsic musculature of the scapula is oriented in a mediolateral fashion, it follows that mediolaterally configured hard-tissue features like scapular length were most distinct among genotype groups. As had been noted previously with long bones, this study demonstrates that genetically enhanced muscle size has marked effects on the morphological characteristics of the shoulder.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center