Format

Send to

Choose Destination
Int J Neuropsychopharmacol. 2012 Feb;15(1):77-90. doi: 10.1017/S1461145711000149. Epub 2011 Feb 18.

Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease.

Author information

1
Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.
2
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Abstract

Elevated levels of β-site APP cleaving enzyme 1 (BACE1) were found in the brain of some sporadic Alzheimer's disease (AD) patients; however, the underlying mechanism is unknown. BACE1 cleaves β-amyloid precursor protein (APP) to generate amyloid β protein (Aβ), a central component of neuritic plaques in AD brains. Nuclear factor-kappa B (NF-κB) signalling plays an important role in gene regulation and is implicated in inflammation, oxidative stress and apoptosis. In this report we found that both BACE1 and NF-κB p65 levels were significantly increased in the brains of AD patients. Two functional NF-κB-binding elements were identified in the human BACE1 promoter region. We found that NF-κB p65 expression resulted in increased BACE1 promoter activity and BACE1 transcription, while disruption of NF-κB p65 decreased BACE1 gene expression in p65 knockout (RelA-knockout) cells. In addition, NF-κB p65 expression leads to up-regulated β-secretase cleavage and Aβ production, while non-steroidal anti-inflammatory drugs (NSAIDs) inhibited BACE1 transcriptional activation induced by strong NF-κB activator tumour necrosis factor-alpha (TNF-α). Taken together, our results clearly demonstrate that NF-κB signalling facilitates BACE1 gene expression and APP processing, and increased BACE1 expression mediated by NF-κB signalling in the brain could be one of the novel molecular mechanisms underlying the development of AD in some sporadic cases. Furthermore, NSAIDs could block the inflammation-induced BACE1 transcription and Aβ production. Our study suggests that inhibition of NF-κB-mediated BACE1 expression may be a valuable drug target for AD therapy.

PMID:
21329555
DOI:
10.1017/S1461145711000149
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center