Format

Send to

Choose Destination
Int J Cancer. 2012 Jan 1;130(1):200-12. doi: 10.1002/ijc.25993. Epub 2011 May 9.

Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells.

Author information

1
The Hormel Institute, University of Minnesota, Austin, MN, USA.

Abstract

Androgen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(-) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways. Our results showed that GBA preferentially suppressed AR(+) PCa cell growth than AR(-) PCa cells. GBA induced a caspase-mediated apoptosis that was attenuated by a general caspase inhibitor. Subapoptotic GBA downregulated AR protein in LNCaP cells primarily through promoting its proteasomal degradation, and inhibited AR-dependent transcription without affecting AR nuclear translocation. Whereas docking simulations predicted binding of GBA to the AR ligand binding domain with similarities and differences with the AR antagonist drug bicalutamide (Bic), LNCaP cell culture assays did not detect agonist activity of GBA. GBA and Bic exerted greater than additive inhibitory effect on cell growth when used together. Subapoptotic GBA induced G(1) arrest associated with an inhibition of cyclin/CDK4/6 pathway, especially cyclin D(1) without the causal involvement of cyclin-dependent kinase (CDK) inhibitory proteins P21(Cip1) and P27(Kip1) . In summary, the novelty of GBA as an anti-AR compound resides in the distinction between GBA and Bic with respect to AR protein turnover and a lack of agonist effect. Our observations of anti-AR and cell cycle arrest actions plus the anti-angiogenesis effect reported elsewhere suggest GBA as a multitargeting drug candidate for the prevention and therapy of PCa.

PMID:
21328348
PMCID:
PMC3137900
DOI:
10.1002/ijc.25993
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center