Format

Send to

Choose Destination
Biochem Cell Biol. 2011 Feb;89(1):1-11. doi: 10.1139/O10-112.

MeCP2: structure and function.

Author information

1
Byrd Biotechnology Building, Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.

Abstract

Despite a vast body of literature linking chromatin structure to regulation of gene expression, the role of architectural proteins in higher order chromatin transitions required for transcription activation and repression has remained an under-studied field. To demonstrate the current knowledge of the role of such proteins, we have focused our attention on the methylated DNA binding and chromatin-associated protein MeCP2. Structural studies using chromatin assembled in vitro have revealed that MeCP2 can associate with nucleosomes in an N-terminus dependent manner and efficiently condense nucleosome arrays. The present review attempts to match MeCP2 structural domains, or lack thereof, and specific chromatin features needed for the proper recruitment of MeCP2 to its multiple functions as either activator or repressor. We specifically focused on MeCP2's role in Rett syndrome, a neurological disorder associated with specific MeCP2 mutations.

PMID:
21326358
DOI:
10.1139/O10-112
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center