Send to

Choose Destination
See comment in PubMed Commons below
Acta Biochim Biophys Sin (Shanghai). 2011 Apr;43(4):248-57. doi: 10.1093/abbs/gmr007. Epub 2011 Feb 16.

PGC-1 coactivators in the control of energy metabolism.

Author information

  • 1Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, China.


Chronic disruption of energy balance, where energy intake exceeds expenditure, is a major risk factor for the development of metabolic syndrome. The latter is characterized by a constellation of symptoms including obesity, dyslipidemia, insulin resistance, hypertension, and non-alcoholic fatty liver disease. Altered expression of genes involved in glucose and lipid metabolism as well as mitochondrial oxidative phosphorylation has been implicated in the pathogenesis of these disorders. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators is emerging as a hub linking nutritional and hormonal signals and energy metabolism. PGC-1α and PGC-1β are highly responsive to environmental cues and coordinate metabolic gene programs through interaction with transcription factors and chromatin-remodeling proteins. PGC-1α has been implicated in the pathogenic conditions including obesity, type 2 diabetes, neurodegeneration, and cardiomyopathy, whereas PGC-1β plays an important role in plasma lipoprotein homeostasis and serves as a hepatic target for niacin, a potent hypotriglyceridemic drug. Here, we review recent advances in the identification of physiological and pathophysiological contexts involving PGC-1 coactivators, and also discuss their implications for therapeutic development.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center