Send to

Choose Destination
J Gene Med. 2011 Feb;13(2):77-88. doi: 10.1002/jgm.1542.

Stem cell antigen-1 positive cell-based systemic human growth hormone gene transfer strategy increases endosteal bone resorption and bone loss in mice.

Author information

Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.



The present study assesses the effect of the stem cell antigen-1 positive (Sca-1(+) ) cell-based human growth hormone (hGH) ex vivo gene transfer strategy on endosteal bone mass in the mouse.


Sublethally irradiated recipient mice were transplanted with Sca-1(+) cells transduced with lentiviral vectors expressing hGH or β-galactosidase control genes. Bone parameters were assessed by micro-computed tomography and histomorphometry.


This hGH strategy drastically increased hGH mRNA levels in bone marrow cells and serum insulin-like growth factor-I (IGF-I) (by nearly 50%, p < 0.002) in hGH recipient mice. Femoral trabecular bone volume of the hGH mice was significantly reduced by 35% (p < 0.002). The hGH mice also had decreased trabecular number (by 26%; p < 0.0001), increased trabecular separation (by 38%; p < 0.0002) and reduced trabecular connectivity density (by 64%; p < 0.001), as well as significantly more osteoclasts (2.5-fold; p < 0.05) and greater osteoclastic surface per bone surface (2.6-fold; p < 0.01).


Targeted expression of hGH in cells of marrow cavity through the Sca-1(+) cell-based gene transfer strategy increased circulating IGF-I and decreased endosteal bone mass through an increase in resorption in recipient mice. These results indicate that high local levels of hGH or IGF-I in the bone marrow microenvironment enhanced resorption, which is consistent with previous findings in transgenic mice with targeted bone IGF-I expression showing that high local IGF-I expression increased bone remodeling, favoring a net bone loss. Thus, GH and/or IGF-I would not be an appropriate transgene for use in this Sca-1(+) cell-based gene transfer strategy to promote endosteal bone formation. Published 2011 John Wiley & Sons, Ltd.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center