Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2011 Nov;1814(11):1518-27. doi: 10.1016/j.bbapap.2011.02.004. Epub 2011 Feb 17.

PLP-dependent H(2)S biogenesis.

Author information

1
Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-5606, USA.

Abstract

The role of endogenously produced H(2)S in mediating varied physiological effects in mammals has spurred enormous recent interest in understanding its biology and in exploiting its pharmacological potential. In these early days in the field of H(2)S signaling, large gaps exist in our understanding of its biological targets, its mechanisms of action and the regulation of its biogenesis and its clearance. Two branches within the sulfur metabolic pathway contribute to H(2)S production: (i) the reverse transsulfuration pathway in which two pyridoxal 5'-phosphate-dependent (PLP) enzymes, cystathionine β-synthase and cystathionine γ-lyase convert homocysteine successively to cystathionine and cysteine and (ii) a branch of the cysteine catabolic pathway which converts cysteine to mercaptopyruvate via a PLP-dependent cysteine aminotransferase and subsequently, to mercaptopyruvate sulfur transferase-bound persulfide from which H(2)S can be liberated. In this review, we present an overview of the kinetics of the H(2)S-generating reactions, compare the structures of the PLP-enzymes involved in its biogenesis and discuss strategies for their regulation. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.

PMID:
21315854
PMCID:
PMC3193879
DOI:
10.1016/j.bbapap.2011.02.004
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center