Send to

Choose Destination
Neurochem Int. 2011 May;58(6):648-55. doi: 10.1016/j.neuint.2011.02.003. Epub 2011 Feb 17.

Altered sensitivity of cerebellar granule cells to glutamate receptor overactivation in the Cln3(Δex7/8)-knock-in mouse model of juvenile neuronal ceroid lipofuscinosis.

Author information

Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.


The juvenile onset form of neuronal ceroid lipofuscinoses (JNCL) is a recessively inherited lysosomal storage disorder characterized by progressive neurodegeneration. JNCL results from mutations in the CLN3 gene that encodes a lysosomal membrane protein with unknown function. Utilizing a Cln3-knock-out mouse model of JNCL that was created on the 129S6/SvEv genetic background, we have previously demonstrated that CLN3-deficient cerebellar granule cells (CGCs) have a selectively increased sensitivity to AMPA-type glutamate receptor-mediated toxicity. Our recent findings that CGCs from 129S6/SvEv and C57BL/6J wild type (WT) mice have significant differences in glutamate receptor expression and in excitotoxic vulnerability indicated that the genetic background possibly have a strong influence on how glutamate receptor function is dysregulated in CLN3-deficient neurons. Indeed, here we show that in the Cln3(Δex7/8)-knock-in mouse model, that is on the C57BL/6J genetic background, mimics the most frequent mutation observed in JNCL patients and considered a null mutant, the sensitivity of CGCs to both AMPA- and NMDA-type glutamate receptor overactivations is altered. Cultured wild type and Cln3(Δex7/8) CGCs were equally sensitive to AMPA toxicity after 2 or 3 weeks in vitro, whereas the subunit-selective AMPA receptor agonist, CPW-399, induced significantly more cell death in mature, 3-week-old Cln3(Δex7/8) cultures. NMDA receptor-mediated toxicity changed during in vitro development: Cln3(Δex7/8) CGCs were less sensitive to high concentration of NMDA after 2 weeks in culture but became more vulnerable than their WT counterparts after 3 weeks in vitro. Abnormally altered glutamate receptor function in the cerebellum may result in motor deficits, and we confirmed that 7-week-old Cln3(Δex7/8) mice, similarly to Cln3-knock-out mice, have a motor coordination deficit as measured by an accelerating rotarod. Our results demonstrate altered glutamate receptor function in Cln3(Δex7/8) neurons and suggest that both AMPA and NMDA receptors are potential therapeutic targets in JNCL.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center