Format

Send to

Choose Destination
Am J Physiol Renal Physiol. 2011 May;300(5):F1089-95. doi: 10.1152/ajprenal.00610.2010. Epub 2011 Feb 9.

Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress.

Author information

1
Renal-Electrolyte Div., Dept. of Medicine, Pittsburgh, PA 15261, USA.

Abstract

Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.

PMID:
21307123
PMCID:
PMC3094055
DOI:
10.1152/ajprenal.00610.2010
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center