Format

Send to

Choose Destination
See comment in PubMed Commons below
Stem Cells. 2011 Apr;29(4):700-12. doi: 10.1002/stem.614.

Conditional activation of Bmi1 expression regulates self-renewal, apoptosis, and differentiation of neural stem/progenitor cells in vitro and in vivo.

Author information

1
Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.

Abstract

The Polycomb group protein Bmi1 is a key regulator of self-renewal of embryonic and adult central nervous system stem cells, and its overexpression has been shown to occur in several types of brain tumors. In a Cre/LoxP-based conditional transgenic mouse model, we show that fine-tuning of Bmi1 expression in embryonic neural stem cell (NSC) is sufficient to increase their proliferation and self-renewal potential both in vitro and in vivo. This is linked to downregulation of both the ink4a/ARF and the p21/Foxg1 axes. However, increased and ectopic proliferation induced by overexpression of Bmi1 in progenitors committed toward a neuronal lineage during embryonic cortical development, triggers apoptosis through a survivin-mediated mechanism and leads to reduced brain size. Postnatally, however, increased self-renewal capacity of neural stem/progenitor cells (NSPC) is independent of Foxg1 and resistance to apoptosis is observed in neural progenitors derived from NSC-overexpressing Bmi1. Neoplastic transformation is absent in mice-overexpressing Bmi1 aged up to 20 months. These studies provide strong evidence that fine tuning of Bmi1 expression is a viable tool to increase self-renewal capacity of NSCs both in vitro and in vivo without eliciting neoplastic transformation of these cells.

PMID:
21305672
DOI:
10.1002/stem.614
[Indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center