Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurotrauma. 2011 Nov;28(11):2349-62. doi: 10.1089/neu.2010.1409. Epub 2011 Apr 12.

Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury.

Author information

1
Department of Physical Medicine and Rehabilitation, University of Alabama-Birmingham, Birmingham, Alabama 35249, USA.

Abstract

Traumatic spinal cord injury (SCI) induces tissue damage and results in the formation of a cavity that inhibits axonal regrowth. Filling this cavity with a growth-permissive substrate would likely promote regeneration and repair. Single-walled carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG) have been shown to increase the length of selected neurites in vitro. We hypothesized that administration of SWNT-PEG after experimental SCI will promote regeneration of axons into the lesion cavity and functional recovery of the hindlimbs. To evaluate this hypothesis, complete transection SCI was induced at the T9 vertebral level in adult female rats. One week after transection, the epicenter of the lesion was injected with 25??L of either vehicle (saline), or 1??g/mL, 10??g/mL, or 100??g/mL of SWNT-PEG. Behavioral analysis was conducted before injury, before treatment, and once every 7 days for 28 days after treatment. At 28 days post-injection the rats were euthanized and spinal cord tissue was extracted. Immunohistochemistry was used to detect the area of the cyst, the extent of the glial scar, and axonal morphology. We found that post-SCI administration of SWNT-PEG decreased lesion volume, increased neurofilament-positive fibers and corticospinal tract fibers in the lesion, and did not increase reactive gliosis. Additionally, post-SCI administration of SWNT-PEG induced a modest improvement in hindlimb locomotor recovery without inducing hyperalgesia. These data suggest that SWNT-PEG may be an effective material to promote axonal repair and regeneration after SCI.

PMID:
21303267
PMCID:
PMC3218389
DOI:
10.1089/neu.2010.1409
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc. Icon for PubMed Central
    Loading ...
    Support Center