Format

Send to

Choose Destination
J Biomech Eng. 2011 Mar;133(3):031002. doi: 10.1115/1.4003328.

Evaluation of different projectiles in matched experimental eye impact simulations.

Author information

1
Center for Injury Biomechanics, Virginia Tech-Wake Forest University, Winston-Salem, NC 27157, USA.

Abstract

Eye trauma results in 30,000 cases of blindness each year in the United States and is the second leading cause of monocular visual impairment. Eye injury is caused by a wide variety of projectile impacts and loading scenarios with common sources of trauma being motor vehicle crashes, military operations, and sporting impacts. For the current study, 79 experimental eye impact tests in literature were computationally modeled to analyze global and localized responses of the eye to a variety of blunt projectile impacts. Simulations were run with eight different projectiles (airsoft pellets, baseball, air gun pellets commonly known as BBs, blunt impactor, paintball, aluminum, foam, and plastic rods) to characterize effects of the projectile size, mass, geometry, material properties, and velocity on eye response. This study presents a matched comparison of experimental test results and computational model outputs including stress, energy, and pressure used to evaluate risk of eye injury. In general, the computational results agreed with the experimental results. A receiver operating characteristic curve analysis was used to establish the stress and pressure thresholds that best discriminated for globe rupture in the matched experimental tests. Globe rupture is predicted by the computational simulations when the corneoscleral stress exceeds 17.21 MPa or the vitreous pressure exceeds 1.01 MPa. Peak stresses were located at the apex of the cornea, the limbus, or the equator depending on the type of projectile impacting the eye. A multivariate correlation analysis revealed that area-normalized kinetic energy was the best single predictor of peak stress and pressure. Additional incorporation of a relative size parameter that relates the projectile area to the area of the eye reduced stress response variability and may be of importance in eye injury prediction. The modeling efforts shed light on the injury response of the eye when subjected to a variety of blunt projectile impacts and further validate the eye model's ability to predict globe rupture. Results of this study are relevant to the design and regulation of safety systems and equipment to protect against eye injury.

PMID:
21303178
DOI:
10.1115/1.4003328
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center