Format

Send to

Choose Destination
Behav Res Methods. 2011 Sep;43(3):679-90. doi: 10.3758/s13428-010-0049-5.

A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.

Author information

1
Department of Psychology, University of Victoria, Room A234, Cornett Building, P.O. Box 3050 STN CSC, Victoria, BC V8W 3P5, Canada. mmasson@uvic.ca

Erratum in

  • Behav Res Methods. 2011 Sep;43(3):691.

Abstract

Null-hypothesis significance testing remains the standard inferential tool in cognitive science despite its serious disadvantages. Primary among these is the fact that the resulting probability value does not tell the researcher what he or she usually wants to know: How probable is a hypothesis, given the obtained data? Inspired by developments presented by Wagenmakers (Psychonomic Bulletin & Review, 14, 779-804, 2007), I provide a tutorial on a Bayesian model selection approach that requires only a simple transformation of sum-of-squares values generated by the standard analysis of variance. This approach generates a graded level of evidence regarding which model (e.g., effect absent [null hypothesis] vs. effect present [alternative hypothesis]) is more strongly supported by the data. This method also obviates admonitions never to speak of accepting the null hypothesis. An Excel worksheet for computing the Bayesian analysis is provided as supplemental material.

PMID:
21302025
DOI:
10.3758/s13428-010-0049-5
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center