Send to

Choose Destination
J Alzheimers Dis. 2011;24(3):507-17. doi: 10.3233/JAD-2011-101608.

Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex.

Author information

Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.


Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by brain deposition of senile (neuritic) plaques containing amyloid-β, neurofibrillary tangles, synaptic loss, neuroinflammation, and overexpression of arachidonic acid (AA, 20:4n-6) metabolizing enzymes. Lipid concentration changes have been reported in different brain regions, but often partially or as a percent of the total concentration. In this study, we measured absolute concentrations (per gram wet weight) of a wide range of lipids in postmortem prefrontal cortex (Brodmann area 9) from 10 AD patients and 9 non-AD controls. Mean total brain lipid, phospholipid, cholesterol, and triglyceride concentrations did not differ significantly between AD and controls. There was a significant 73% decrease in plasmalogen choline, but no difference in other measured phospholipids. Fatty acid concentrations in total phospholipid did not differ from control. However, docosahexaenoic acid (DHA, 22:6n-3) was reduced in ethanolamine glycerophospholipid and choline glycerophospholipid, but increased in phosphatidylinositol. AA was reduced in choline glycerophospholipid, but increased in phosphatidylinositol, while docosatetraenoic acid (22:4n-6), an AA elongation product, was reduced in total brain lipid, cholesteryl ester and triglyceride. These lipid changes, which suggest extensive membrane remodeling, may contribute to membrane instability and synaptic loss in AD and reflect neuroinflammation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IOS Press Icon for PubMed Central
Loading ...
Support Center