Format

Send to

Choose Destination
IEEE Trans Biomed Eng. 2013 Mar;60(3):753-62. doi: 10.1109/TBME.2011.2109715. Epub 2011 Jan 31.

Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction.

Author information

1
Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA. lchen3@gmail.com

Abstract

Neural oscillations are important features in a working central nervous system, facilitating efficient communication across large networks of neurons. They are implicated in a diverse range of processes such as synchronization and synaptic plasticity, and can be seen in a variety of cognitive processes. For example, hippocampal theta oscillations are thought to be a crucial component of memory encoding and retrieval. To better study the role of these oscillations in various cognitive processes, and to be able to build clinical applications around them, accurate and precise estimations of the instantaneous frequency and phase are required. Here, we present methodology based on autoregressive modeling to accomplish this in real time. This allows the targeting of stimulation to a specific phase of a detected oscillation. We first assess performance of the algorithm on two signals where the exact phase and frequency are known. Then, using intracranial EEG recorded from two patients performing a Sternberg memory task, we characterize our algorithm's phase-locking performance on physiologic theta oscillations: optimizing algorithm parameters on the first patient using a genetic algorithm, we carried out cross-validation procedures on subsequent trials and electrodes within the same patient, as well as on data recorded from the second patient.

PMID:
21292589
PMCID:
PMC3371105
DOI:
10.1109/TBME.2011.2109715
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
Loading ...
Support Center