Send to

Choose Destination
Am J Pathol. 2011 Feb;178(2):764-73. doi: 10.1016/j.ajpath.2010.10.006.

Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease.

Author information

Department of Bioengineering, University of Washington, Seattle, Washington, USA.


Arterial medial calcification (AMC), a hallmark of vascular disease in uremic patients, is highly correlated with serum phosphate levels and cardiovascular mortality. To determine the mechanisms of AMC, mice were made uremic by partial right-side renal ablation (week 0), followed by left-side nephrectomy at week 2. At 3 weeks, mice were switched to a high-phosphate diet, and various parameters of disease progression were examined over time. Serum phosphate, calcium, and fibroblast growth factor 23 (FGF-23) were up-regulated as early as week 4. Whereas serum phosphate and calcium levels declined to normal by 10 weeks, FGF-23 levels remained elevated through 16 weeks, consistent with an increased phosphate load. Elastin turnover and vascular smooth muscle cell (VSMC) phenotype change were early events, detected by week 4 and before AMC. Both AMC and VSMC loss were significantly elevated by week 8. Matrix metalloprotease 2 (MMP-2) and cathepsin S were present at baseline and were significantly elevated at weeks 8 and 12. In contrast, MMP-9 was not up-regulated until week 12. These findings over time suggest that VSMC phenotype change and VSMC loss (early phosphate-dependent events) may be necessary and sufficient to promote AMC in uremic mice fed a high-phosphate diet, whereas elastin degradation might be necessary but is not sufficient to induce AMC (because elastin degradation occurred also in uremic mice on a normal-phosphate diet, but they did not develop AMC).

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center