Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):193-203. doi: 10.1109/TNSRE.2011.2107750. Epub 2011 Jan 28.

Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.

Author information

  • 1Department of Computer Science, Brown University, Providence, RI 02912, USA. spkim@cs.brown.edu

Abstract

We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (∼40) can be used for natural point-and-click 2-D cursor control of a personal computer.

PMID:
21278024
PMCID:
PMC3294291
DOI:
10.1109/TNSRE.2011.2107750
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Support Center