Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2011 Dec;61(7):1141-51. doi: 10.1016/j.neuropharm.2011.01.021. Epub 2011 Jan 27.

Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca²⁺-permeable AMPA receptors during the incubation of cocaine craving.

Author information

1
Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA. ferrario@umich.edu

Abstract

Cue-induced cocaine seeking intensifies or incubates after withdrawal from extended access cocaine self-administration, a phenomenon termed incubation of cocaine craving. The expression of incubated craving is mediated by Ca²⁺-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Thus, CP-AMPARs are a potential target for therapeutic intervention, making it important to understand mechanisms that govern their accumulation. Here we used subcellular fractionation and biotinylation of NAc tissue to examine the abundance and distribution of AMPAR subunits, and GluA1 phosphorylation, in the incubation model. We also studied two transmembrane AMPA receptor regulatory proteins (TARPs), γ-2 and γ-4. Our results, together with earlier findings, suggest that some of the new CP-AMPARs are synaptic. These are probably associated with γ-2, but they are loosely tethered to the PSD. Levels of GluA1 phosphorylated at serine 845 (pS845 GluA1) were significantly increased in biotinylated tissue and in an extrasynaptic membrane-enriched fraction. These results suggest that increased synaptic levels of CP-AMPARs may result in part from an increase in pS845 GluA1 in extrasynaptic membranes, given that S845 phosphorylation primes GluA1-containing AMPARs for synaptic insertion and extrasynaptic AMPARs supply the synapse. Some of the new extrasynaptic CP-AMPARs are likely associated with γ-4, rather than γ-2. The maintenance of CP-AMPARs in NAc synapses during withdrawal is accompanied by activation of CaMKII and ERK2 but not CaMKI. Overall, AMPAR plasticity in the incubation model shares some features with better described forms of synaptic plasticity, although the timing of the phenomenon and the persistence of related neuroadaptations are significantly different.

PMID:
21276808
PMCID:
PMC3094740
DOI:
10.1016/j.neuropharm.2011.01.021
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center