Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurotherapeutics. 2011 Jan;8(1):3-18. doi: 10.1007/s13311-010-0002-4.

MRI in rodent models of brain disorders.

Author information

1
Department of Neuroscience, Mayo Clinic, Rochester, Minnesota 55905, USA.

Abstract

Magnetic resonance imaging (MRI) is a well-established tool in clinical practice and research on human neurological disorders. Translational MRI research utilizing rodent models of central nervous system (CNS) diseases is becoming popular with the increased availability of dedicated small animal MRI systems. Projects utilizing this technology typically fall into one of two categories: 1) true "pre-clinical" studies involving the use of MRI as a noninvasive disease monitoring tool which serves as a biomarker for selected aspects of the disease and 2) studies investigating the pathomechanism of known human MRI findings in CNS disease models. Most small animal MRI systems operate at 4.7-11.7 Tesla field strengths. Although the higher field strength clearly results in a higher signal-to-noise ratio, which enables higher resolution acquisition, a variety of artifacts and limitations related to the specific absorption rate represent significant challenges in these experiments. In addition to standard T1-, T2-, and T2*-weighted MRI methods, all of the currently available advanced MRI techniques have been utilized in experimental animals, including diffusion, perfusion, and susceptibility weighted imaging, functional magnetic resonance imaging, chemical shift imaging, heteronuclear imaging, and (1)H or (31)P MR spectroscopy. Selected MRI techniques are also exclusively utilized in experimental research, including manganese-enhanced MRI, and cell-specific/molecular imaging techniques utilizing negative contrast materials. In this review, we describe technical and practical aspects of small animal MRI and provide examples of different MRI techniques in anatomical imaging and tract tracing as well as several models of neurological disorders, including inflammatory, neurodegenerative, vascular, and traumatic brain and spinal cord injury models, and neoplastic diseases.

PMID:
21274681
PMCID:
PMC3075741
DOI:
10.1007/s13311-010-0002-4
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center