Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Cancer. 2011 May;47(7):1095-105. doi: 10.1016/j.ejca.2010.12.010. Epub 2011 Jan 25.

Differentiation of human rhabdomyosarcoma RD cells is regulated by reciprocal, functional interactions between myostatin, p38 and extracellular regulated kinase signalling pathways.

Author information

1
Department of Biomedical Sciences and Biotechnologies and Interuniversity Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123 Brescia, Italy.

Abstract

Rhabdomyosarcoma (RMS) includes heterogeneous tumours of mesenchymal derivation which are genetically committed to the myogenic lineage, but fail to complete terminal differentiation. Previous works have reported on deregulated myostatin, p38 and extracellular regulated kinase (ERK) signalling in RMS cell lines; however, the functional link between these pathways and their relative contribution to RMS pathogenesis and/or maintenance of the transformed phenotype in vitro are unclear. Herein we show that the constitutive expression of a dominant-negative form of activin receptor type IIb (dnACTRIIb), which inhibits myostatin signalling, decreased proliferation and promoted differentiation of the human RMS RD cell line. DnACTRIIb-dependent differentiation of RD cells correlated with a reduced SMAD2/3 (small mother against decapentaplegic) and ERK signalling and the activation of p38 pathway. Conversely, the expression of a constitutively activated ALK5 (activin receptor-like kinase) (caALK5) form, activating SMAD3 and ERK pathways, led to further impairment of RD differentiation. Pharmacological blockade of ERK pathway in RD cells was sufficient to replicate the biological phenotype observed in dnACTRIIb-expressing RD cells, and also recovered the differentiation of caALK5-expressing RD cells. Conversely, deliberate activation of p38 signalling mimics the effect of dnActRIIb and overcame the differentiation block in RD cells. These data indicate the existence of a network formed by myostatin/SMAD2/3, ERK and p38 pathways that, when deregulated, might contribute to the pathogenesis of RMS. The components of this network might, therefore, be a valuable target for interventions towards correcting the malignant phenotype of RMS.

PMID:
21273059
DOI:
10.1016/j.ejca.2010.12.010
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center