Send to

Choose Destination
Radiat Res. 2011 Feb;175(2):150-8. Epub 2010 Nov 17.

Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species.

Author information

Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA.


It has been hypothesized that ionizing radiation-induced disruptions in mitochondrial O₂ metabolism lead to persistent heritable increases in steady-state levels of intracellular superoxide (O₂(•U+2212)) and hydrogen peroxide (H₂O₂) that contribute to the biological effects of radiation. Hamster fibroblasts (B9 cells) expressing a mutation in the gene coding for the mitochondrial electron transport chain protein succinate dehydrogenase subunit C (SDHC) demonstrate increases in steady-state levels of O₂•- and H₂O₂. When B9 cells were exposed to low-dose/low-LET radiation (5-50 cGy), they displayed significantly increased clonogenic cell killing compared with parental cells. Clones derived from B9 cells overexpressing a wild-type human SDHC (T4, T8) demonstrated significantly increased surviving fractions after exposure to 5-50 cGy relative to B9 vector controls. In addition, pretreatment with polyethylene glycol-conjugated CuZn superoxide dismutase and catalase as well as adenoviral-mediated overexpression of MnSOD and/or mitochondria-targeted catalase resulted in significantly increased survival of B9 cells exposed to 10 cGy ionizing radiation relative to vector controls. Adenoviral-mediated overexpression of either MnSOD or mitochondria-targeted catalase alone was equally as effective as when both were combined. These results show that mammalian cells over expressing mutations in SDHC demonstrate low-dose/low-LET radiation sensitization that is mediated by increased levels of O₂•- and H₂O₂. These results also support the hypothesis that mitochondrial O₂•- and H₂O₂ originating from SDH are capable of playing a role in low-dose ionizing radiation-induced biological responses.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center