Send to

Choose Destination
See comment in PubMed Commons below
J Microencapsul. 2011;28(2):93-8. doi: 10.3109/02652048.2010.534823.

Self-assembled polyion complex micelles for sustained release of hydrophilic drug.

Author information

Institute of Fine Chemical and Engineering, Henan University, Kaifeng, Henan 475001, China.


Graft copolymer polyethylenimine-graft-poly(N-vinylpyrrolidone) (PEI-g-PVP) was prepared by coupling mono carboxyl-terminated PVP (PVP-COOH) with PEI using N,N'-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) as coupling agents. In aqueous medium, PVP-g-PEI can self-assemble into stable polyion complex micelles with an oppositely charged block copolymer, poly(N-vinylpyrrolidone)-block-poly(2-acrylamido-2-methyl-1-propanesulphonic acid) (PVP-b-PAMPS). Transmission electron microscopy images showed that these micelles were regularly spherical in shape. The micelle size determined by size analysis was around 142 nm. To estimate their feasibility as vehicles for drugs, the model drug folic acid (FA) was incorporated into the cores of the micelles via electrostatic interactions. In vitro release test of FA showed that the drug-release rates are dependent on the pH value of the release media. Based on these results, we can conclude that the polyion complex micelles prepared from the PEI-g-PVP/PVP-b-PAMPS copolymers have great potential as drug delivery nanocarriers.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center