Format

Send to

Choose Destination
Mol Vis. 2011 Jan 19;17:186-98.

Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses.

Author information

1
Graduate Institute of Medicine and Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan.

Abstract

PURPOSE:

Post-translational modification (PTM) of lens proteins is believed to play various roles in age-related lens function and development. Among the different types of PTM, phosphorylation is most noteworthy to play a major role in the regulation of various biosignaling pathways in relation to metabolic processes and cellular functions. The present study reported the quantitative analysis of the in vivo phosphoproteomics profiles of human normal and cataractous lenses with the aim of identifying specific phosphorylation sites which may provide insights into the physiologic significance of phosphorylation in relation to cataract formation.

METHODS:

To improve detection sensitivity of low abundant proteins, we first adopted SDS-gel electrophoresis fractionation of lens extracts to identify and compare the protein compositions between normal and cataractous lenses, followed by tryptic digestion, enrichment of phosphopeptides by immobilized metal affinity chromatography (IMAC) and nano-liquid chromatography coupled tandem mass spectrometry (nanoLC-MS/MS) analysis.

RESULTS:

By comprehensively screening of the phosphoproteome in normal and cataractous lenses, we identified 32 phosphoproteins and 73 phosphorylated sites. The most abundantly phosphorylated proteins are two subunits of β-crystallin, i.e., βB1-crystallin (12%) and βB2-crystallin (12%). Moreover, serine was found to be the most abundantly phosphorylated residue (72%) in comparison with threonine (24%) and tyrosine (4%) in the lens phosphoproteome. The quantitative analysis revealed significant and distinct changes of 19 phosphoproteins corresponding to 28 phosphorylated sites between these two types of human lenses, including 20 newly discovered novel phosphorylation sites on lens proteins.

CONCLUSIONS:

The shotgun phosphoproteomics approach to characterize protein phosphorylation may be adapted and extended to the comprehensive analysis of other types of post-translational modification of lens proteins in vivo. The identification of these novel phosphorylation sites in lens proteins that showed differential expression in the cataractous lens may bear some unknown physiologic significance and provide insights into phosphorylation-related human eye diseases, which warrant further investigation in the future.

PMID:
21264232
PMCID:
PMC3025096
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Molecular Vision Icon for PubMed Central
Loading ...
Support Center