Send to

Choose Destination
See comment in PubMed Commons below
Hypertension. 2011 Mar;57(3):484-9. doi: 10.1161/HYPERTENSIONAHA.110.165365. Epub 2011 Jan 24.

Impact of aging on conduit artery retrograde and oscillatory shear at rest and during exercise: role of nitric oxide.

Author information

Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.


Aging has been recently associated with increased retrograde and oscillatory shear in peripheral conduit arteries, a hemodynamic environment that favors a proatherogenic endothelial cell phenotype. We evaluated whether nitric oxide (NO) bioavailability in resistance vessels contributes to age-related differences in shear rate patterns in upstream conduit arteries at rest and during rhythmic muscle contraction. Younger (n=11, age 26 ± 2 years) and older (n=11, age 61 ± 2 years) healthy subjects received intra-arterial saline (control) and the NO synthase inhibitor N(G)-Monomethyl-L-arginine. Brachial artery diameter and velocities were measured via Doppler ultrasound at rest and during a 5-minute bout of rhythmic forearm exercise. At rest, older subjects exhibited greater brachial artery retrograde and oscillatory shear (-13.2 ± 3.0 s(-1) and 0.11 ± .0.02 arbitrary units, respectively) compared with young subjects (-4.8 ± 2.3 s(-1) and 0.04 ± 0.02 arbitrary units, respectively; both P<0.05). NO synthase inhibition in the forearm circulation of young, but not of older, subjects increased retrograde and oscillatory shear (both P<0.05), such that differences between young and old at rest were abolished (both P>0.05). From rest to steady-state exercise, older subjects decreased retrograde and oscillatory shear (both P<0.05) to the extent that no exercise-related differences were found between groups (both P>0.05). Inhibition of NO synthase in the forearm circulation did not affect retrograde and oscillatory shear during exercise in either group (all P>0.05). These data demonstrate for the first time that reduced NO bioavailability in the resistance vessels contributes, in part, to age-related discrepancies in resting shear patterns, thus identifying a potential mechanism for increased risk of atherosclerotic disease in conduit arteries.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center